In [3]:
    
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')
from mpl_toolkits.mplot3d import Axes3D
import IPython.html.widgets as widg
from IPython.display import clear_output
import sys
%matplotlib inline
    
    
In [4]:
    
class Network:
    def __init__(self, shape):
        """The base network class. This defines a simple feed-forward network with appropriate weights and biases.
        
        Arguments:
        shape (list-like): This defines the # of layers and # of neurons per layer in your network.
                           Each element of the array or list adds a new layer with the number neurons specified by the element.
        Variables:
        self.shape: see shape.
        self.weights: A list of numpy arrays containing the weights corresponding to each channel between neurons.
        self.biases: A list of numpy arrays containing the biases corresponding to each neuron.
        self.errors: A list of numpy arrays containing the error of each neurons in any iteration of the training process.
        self.eta: A float representing the learning rate.
        self.lam: A scale factor used in L2 regularization
        """
        
        self.shape = np.array(shape) #shape is array-like, i.e. (2,3,4) is a 2 input, 3 hidden node, 4 output network
        self.weights = [np.random.ranf((self.shape[i],self.shape[i-1]))*.1 for i in range(1,len(self.shape))]
        self.biases = [np.random.ranf((self.shape[i],))*.1 for i in range(1,len(self.shape))]
        self.errors = [np.random.ranf((self.shape[i],)) for i in range(1,len(self.shape))]
        self.eta = .1
        self.lam = .01
        self.wrong = 0
        self.total = 0
    def sigmoid(self, inputs):
        """Computes the sigmoid function of some input.
        
        Arguments:
        inputs (float or numpy array): The input or inputs to be fed through the sigmoid function.
        """
        
        return 1/(1+np.exp(-inputs))
    def feedforward(self, inputs):
        """Feeds inputs through the network and returns the output.
        
        Arguments:
        inputs (numpy array): The inputs to the network, must be the same size as the first(input) layer.
        
        Variables:
        self.activation: A list of numpy arrays corresponding to the output of each neuron in your network.
        """
        
        assert inputs.shape==self.shape[0] #inputs must feed directly into the first layer.
        self.activation = [np.zeros((self.shape[i],)) for i in range(len(self.shape))]
        self.activation[0] = inputs
        for i in range(1,len(self.shape)):
            self.activation[i]=self.sigmoid(np.dot(self.weights[i-1],self.activation[i-1])+self.biases[i-1])
        return self.activation[-1]
    def calc_learning_rate(self,grad):
        if grad>.85:
            self.eta=.1/grad**.1*1/(.25*(2*np.pi)**.5)*np.exp(-(grad)**2/(2*(.25)**2))
            self.wrong+=1
        else:
            self.eta=.1/grad**.6*1/(.4*(2*np.pi)**.5)*np.exp(-(grad)**2/(2*(.4)**2))*(grad+.08)
        self.total+=1
    def comp_error(self, answer):
        """Computes the errors of each neuron.(Typically called Back Propagation)
        
        Arguments:
        answers (numpy array): The expected output from the network.
        """
#         if (self.activation[-1]-answer).any>.15:
#             self.eta = .005
#         else: 
#             self.eta = .5
        self.calc_learning_rate(np.amax(np.abs((self.activation[-1]-answer))))
        #print(np.amax(np.abs((self.activation[-1]-answer))))
        assert answer.shape==self.activation[-1].shape
        self.errors[-1] = np.pi*np.tan(np.pi/2*(self.activation[-1]-answer))*1/np.cos(np.pi/2*(self.activation[-1]-answer))**2*np.exp(np.dot(self.weights[-1],self.activation[-2])+self.biases[-1])/(np.exp(np.dot(self.weights[-1],self.activation[-2])+self.biases[-1])+1)**2
        for i in range(len(self.shape)-2, 0, -1):
            self.errors[i-1] = self.weights[i].transpose().dot(self.errors[i])*np.exp(np.dot(self.weights[i-1],self.activation[i-1])+self.biases[i-1])/(np.exp(np.dot(self.weights[i-1],self.activation[i-1])+self.biases[i-1])+1)**2
    def grad_descent(self):
        """Changes each variable based on the gradient descent algorithm."""
        
        #for i in range(len(self.biases)):
         #   self.biases[i]=self.biases[i]-self.eta*self.errors[i]
        for i in range(len(self.weights)):
            self.biases[i]=self.biases[i]-self.eta*self.errors[i]
            for j in range(self.weights[i].shape[0]):
                for k in range(self.weights[i].shape[1]):
                    self.weights[i][j,k] = (1-self.eta*self.lam/1000)*self.weights[i][j,k] - self.eta*self.activation[i][k]*self.errors[i][j]
    def train(self, inputs, answer):
        """Trains the network.
        
        Arguments:
        inputs (numpy array): The inputs to the network, must be the same size as the first(input) layer.
        answers (numpy array): The expected output from the network, must be the same size as the last(output) layer.
        """
        
        self.feedforward(inputs)
        self.comp_error(answer)
        self.grad_descent()
    def get_fractional_err(self):
        return(self.wrong/(self.total*1.0))
    
In [5]:
    
n1 = Network([2,15,1])
print n1.feedforward(np.array([1,2]))
for i in range(1000):
    n1.train(np.array([1,2]), np.array([.5]))
print n1.feedforward(np.array([1,2]))
    
    
In [6]:
    
from sklearn.datasets import load_digits
digits = load_digits()
print(digits.data[0]*.01)
    
    
In [6]:
    
num = []
for i in range(50,60):
    num.append(Network([64,i,10]))
    
In [7]:
    
# %timeit num.feedforward(digits.data[89]*.01)
# %timeit num.comp_error(np.eye(10)[digits.target[89]])
# %timeit num.grad_descent()
    
In [8]:
    
def Train_it(num, itera):
    iden = np.eye(10)
    acc = np.zeros((itera,))
    trainer = zip(digits.data,digits.target)
    perm = np.random.permutation(trainer)
    trains = perm[:1000]
    test = perm[1001:]
    #num = Network([64, 14, 10])
    print num.feedforward(digits.data[89]*.01)
    for i in range(itera):
        print(float(100*i/(itera*1.0)))
        for dig, ans in trains:
            num.train(dig*.01,iden[ans])
        cor = 0
        tot = 0
        for dig, ans in test:
            if num.feedforward(dig*.01).argmax()==ans:
                cor += 1
            tot += 1
        acc[i] = cor/float(tot)
    return acc
    
In [9]:
    
acc = Train_it(num[8], 20)
print(acc)
print(num[8].get_fractional_err())
    
    
In [10]:
    
accu = np.zeros((20,50))
fracerr = np.zeros((20,))
for i in range(20):
    accu[i] = Train_it(num[i], 50)
    fracerr[i] = num[i].get_fractional_err()
print(accu)
print(fracerr)
    
    
    
    
In [12]:
    
for i in range(20):
    plt.figure(figsize=(15,10))
    plt.plot(np.linspace(0,50,50),accu[i])
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
In [7]:
    
acc0 = np.loadtxt("Accuracy_Data_run_11.dat")
    
In [14]:
    
plt.figure(figsize=(15,10))
plt.plot(np.linspace(0,20,20), fracerr)
    
    Out[14]:
    
In [8]:
    
def plot_epochs(az_angle, eleva):
    fig = plt.figure(figsize=(15, 10))
    ax = fig.add_subplot(111, projection='3d')
    X, Y = np.meshgrid(np.linspace(0,50,50), np.linspace(0,20, 20))
    ax.plot_surface(X, Y, acc0)
    ax.view_init(elev=eleva, azim=az_angle)
    
In [9]:
    
widg.interact(plot_epochs, az_angle=(0, 360, 1), eleva=(0,20,1))
    
    
In [ ]: